Why the AI Shared Responsibility Model Matters—But Why Enterprises Care About Outcomes


"In AI Security, Responsibility Is Shared—But Accountability Always Lands With The Enterprise." - Merritt Baer, Chief Security Officer, Enkrypt AI
When cloud first went mainstream, security leaders got used to the shared responsibility model: cloud providers secured the physical and infrastructure layers, and enterprises secured the guest OS, applications, and data. That clarity helped everyone adopt cloud at scale.
AI now demands its own shared responsibility model. Model providers own foundational security—training data hygiene, alignment, adversarial hardening, and resilient APIs. Enterprises, meanwhile, own the way they apply AI: whether they scrub sensitive data from prompts, layer on domain-specific guardrails, govern agents, and monitor for misuse.
It’s a neat model. But here’s the thing: as a CIO or CISO, the neatness of responsibility doesn’t protect me from a bad day.
When Shared Responsibility Isn’t Enough
If a foundation model drifts and starts producing harmful outputs, it’s still my name in the incident report. If a prompt injection circumvents my filters and leaks customer data, the regulator isn’t going to parse which side of the shared responsibility diagram failed.
At the end of the day, I’m measured on outcomes. Bad days. Outages, breaches, compliance failures, reputational harm. Whether the failure originated on the provider’s side or on mine, my board, my customers, and my regulators will ask the same question: how did you let this happen?
Turning Responsibility Into Resilience
That’s why at Enkrypt AI, we think about AI security in enterprise terms. Yes, we align with the layered model. But our mission is to reduce the likelihood and the impact of those bad days. We do that by:
- Masking and encrypting data before prompts so sensitive information can’t leak upstream.
- Domain-specific guardrails that catch the risks generic filters miss.
- Sandboxing agents before they connect to production APIs.
- Monitoring and alerting that surface anomalies in real time.
For the CIO and CISO, it’s not about memorizing who’s responsible for Layer 2 versus Layer 4. It’s about whether you can deploy AI at scale without waking up to a headline you never wanted to see.
At Enkrypt AI, that’s the outcome we focus on: not eliminating risk entirely—because that’s not realistic—but building the controls and visibility that make AI adoption safe, resilient, and enterprise-ready.

.jpg)

%20(1).png)
